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• An integrated online trajectory optimization approach is proposed.
• Maintaining and optimization of admissible candidate trajectories of distinctive topologies in order to seek the overall best solution.
• An exploration strategy based on Voronoi diagrams provides the complete set of alternative trajectories.
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budgets.
• The Timed-Elastic-Band trajectory optimization method complies with non-holonomic kinematics of differential-drive and carlike robots.
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a b s t r a c t

This paper presents a novel integrated approach for efficient optimization based online trajectory
planning of topologically distinctive mobile robot trajectories. Online trajectory optimization deforms an
initial coarse path generated by a global planner by minimizing objectives such as path length, transition
time or control effort. Kinodynamic motion properties of mobile robots and clearance from obstacles
impose additional equality and inequality constraints on the trajectory optimization. Local planners
account for efficiency by restricting the search space to locally optimal solutions only. However, the
objective function is usually non-convex as the presence of obstacles generates multiple distinctive local
optima.

The proposed method maintains and simultaneously optimizes a subset of admissible candidate
trajectories of distinctive topologies and thus seeking the overall best candidate among the set of
alternative local solutions. Time-optimal trajectories for differential-drive and carlike robots are obtained
efficiently by adopting the Timed-Elastic-Band approach for the underlying trajectory optimization prob-
lem. The investigation of various example scenarios and a comparative analysis with conventional local
planners confirm the advantages of integrated exploration,maintenance andoptimization of topologically
distinctive trajectories.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

In the context of service robotics and autonomous transporta-
tion systems, mobile robots are required to navigate in highly
dynamic environments while accomplishing complex tasks. On
this occasion, one of the fundamental challenges inmobile robotics
is concerned with the development of universally applicable mo-
tion planning strategies. Online planning is preferred over offline
approaches since they immediately respond to changes in the
environment or perturbations of the robot motion at runtime. The
well known elastic band approach [1] locally deforms a path online.
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Predefined internal forces contract the path while external forces
maintain a separation from obstacles. An alternative established
path planning approach based on an optimization technique is
presented in [2]. However, conventional path planning does not
explicitly incorporate temporal and (kino-)dynamic aspects ofmo-
tion, therefore ignoring constraints imposed by kinematic or dy-
namic motion models with bounded velocities and accelerations.

Kurniawati et al. extend the elastic band approach to the online
deformation of trajectories rather than paths [3]. The approach
consists of two stages that at first repel discrete trajectory points
from obstacles and secondly enforce connectedness w.r.t. a dy-
namic motion model. Delsart et al. combine both stages into a
single operation [4].
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Trajectory optimization usually attempts to minimize either
control effort, control error or the transition time between start
and goal pose. However, the computational burden required to
find an optimal solution is high, which limits its direct online
integration with feedback control. Due to this observation many
researchers are focusing on obtaining solutions or even approx-
imations of the underlying trajectory optimization problem ef-
ficiently. The dynamic window approach (DWA) constitutes a
widely applied method for mobile robot navigation [5]. Simulated
trajectories are sampled repeatedly from a velocity search space
restricted by a set of feasible velocities. A cost function evaluates
each candidate trajectory w.r.t. the remaining distance to the goal,
the forward velocity and separation from obstacles. The lowest-
cost solution is selected for controlling the robot. The approach
accounts for efficiency by restricting the feasible set of valid trajec-
tories to a subset of sampled candidates with segments of constant
velocity leading to merely suboptimal trajectories. Lau et al. [6]
and Sprunk et al. [7] optimize trajectories represented by splines
continuously according to kinodynamic constraints of the robot.
An online planning algorithm that relies on a covariant gradient
descent method is presented in [8]. In a previous work the authors
present a further extension to the elastic band called Timed-Elastic-
Band (TEB) approach [9,10]. The TEB efficiently optimizes the robot
trajectory w.r.t. (kino-)dynamic constraints and non-holonomic
kinematics while explicitly incorporating temporal information
in order to reach the goal pose in minimal time. The approach
accounts for efficiency by exploiting the sparsity structure of the
underlying problem formulation. It has been generalized to an effi-
cient time-optimal model predictive control approach for dynamic
systems [11].

In practice, due to limited computational resources online opti-
mization is usually performed using local optimization techniques
for which the discovery of the global optimal trajectory is not
guaranteed. Especially in mobile robot navigation local minima
often emerge due to the presence of obstacles. Kalakrishnan et al.
apply a stochastic descentmethod to partially overcome these lim-
itations [12]. However, the approach requires extensive sampling
of trajectories in order to estimate the true gradientw.r.t. the global
optimum. A two stage local optimization approach that generates a
set of alternative, topologically distinctive trajectories is presented
by Kuderer et al. [13]. The proposed method extracts multiple
candidate trajectories from a modified Voronoi diagram that often
coincide with the local minima of the optimization problem. Paths
that belong to the same equivalence class are grouped by an equiv-
alence relation based on the winding number at each obstacle. The
paper at hand pursues a related approach for filtering distinctive
candidate trajectories in the context of online trajectory planning.
It mainly differs from [13] w.r.t. sampling strategy, equivalence
relation and the trajectory optimization technique.

The idea of exploring topologically distinctive paths and tra-
jectories is not novel. However, past approaches mainly focus on
global offline path and trajectory planning. Probabilistic roadmap
(PRM) methods that operate with different equivalence relations
are presented in [14] and [15]. The proposed algorithms are in
principle able to identify complicated paths in large, complex
environments but rely upon an algorithmic rather than closed form
computation of the equivalence relations. Our approach employs a
computationally more efficient sampling strategy and equivalence
relation. It is intended to operate in a local subregion of the en-
vironment and is thus suited for online trajectory optimization.
Obviously, this does not replace the need for global planning in
large environments. Knepper et al. propose a local planner based
on path sampling and the Hausdorff metric as equivalence rela-
tion [16]. The planner performs a discrete path selection rather
than deforming continuous trajectories. An equivalence relation
originating from the field of complex analysis is presented by

Fig. 1. TEB trajectory representation with n = 3 poses.

Bhattacharya et al. [17]. The closed form solution motivates its
application within our approach for trajectory filtering. Pokorny
et al. presents a graph free sampling based approach based on
filtrations of simplicial complexes [18].

This contribution presents an integrated online trajectory plan-
ning approach that combines the exploration and simultaneous
optimization of multiple admissible topologically distinctive tra-
jectories during runtime. As an extended version of [19] the online
exploration strategy is fully integrated with the TEB approach
providing the underlying trajectory optimization. Hence the TEB
approach is entirely reformulated w.r.t. its original description [9]
and further extended to a more generic obstacle representation,
supporting forward and backward robotmotion and to accomplish
navigation tasks for carlike robots beyond the differential-drive
robots considered in the original proposal. The combined and in-
tegrated approach preserves the locally optimal trajectory of each
equivalence class to facilitate warm starting from previous solu-
tions. Candidate trajectories are sampled repeatedly and evolve
not only over space but also time which significantly reduces the
number of samples. The sample based approach is compared with
the systematic generation of waypoints fromVoronoi diagrams re-
garding completeness of candidate trajectories and computational
efficiency. The presented approach is available as open-source C++
code and integrated into ROS [20].

The paper is organized as follows: Section 2 formulates the
local TEB optimization approach followed by the exploration of
trajectories in distinctive topologies in Section 3. The overall in-
tegration of exploration, planning and maintenance of trajectories
is described in Section 4. Section 5 demonstrates and evaluates
results obtained from realistic simulations with a differential drive
and a carlike mobile robot. The integrated planning approach is
compared with the original locally operating TEB and the DWA as
mentioned above. Finally, Section 6 summarizes the results and
provides an outlook on future work.

2. Timed-elastic-band approach

This section describes the TEB approach which performs the
actual trajectory optimization in the overall planning task. The ap-
proach is entirely reformulated and extendedw.r.t the formulation
originally presented in [9].

2.1. Definition and representation

Let sk = [xk, yk, βk]
⊺
∈ R2
×S1 denote a robot pose at a discrete

point in time k. xk ∈ R and yk ∈ R represent the planar position
and βk ∈ S1 the orientation of the robot. A discretized trajectory is
described in terms of a sequence S = {sk|k = 1, 2, . . . , n} of robot
poses. The TEB augments the trajectory representationwith strictly
positive time intervals ∆Tk ∈ R+, k = 1, 2, . . . , n − 1. Each time
interval denotes the time that the robot requires to transit from the
pose sk to its subsequent pose sk+1. An exemplary trajectory with
three poses is depicted in Fig. 1. Poses and time intervals are joined
into the parameter vector b ∈ B:

b = [s1, ∆T1, s2, ∆T2, s3, . . . , ∆Tn−1, sn]⊺ (1)
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Fig. 2. Geometric interpretation of the non-holonomic constraint.

2.2. Open-loop optimization problem

The TEB open-loop optimization task is to find controls in
order to transit the robot from an initial pose ss to a final pose
sf in minimal time while satisfying kinodynamic constraints and
maintaining a safe separation from obstacles. The overall task is
formulated as a nonlinear program:

V ∗(b) = min
b

n−1∑
k=1

∆T 2
k (2)

subject to

s1 = ss, sn = sf , ∆Tk > 0
hk(sk+1, sk) = 0,
rk(sk+1, sk) ≥ 0,
ok(sk) ≥ 0,
νk(sk+1, sk, ∆Tk) ≥ 0, (k = 1, 2, . . . , n− 1)
αk(sk+2, sk+1, sk, ∆Tk+1, ∆Tk) ≥ 0, (k = 2, 3, . . . , n− 2)
α1(s2, s1, ∆T1) ≥ 0, αn (sn, sn−1, ∆Tn−1) ≥ 0.

According to the definition of the trajectory (1), the total transition
time is approximated by T ≈

∑n−1
k=1∆Tk. The minimization of T is

ill-posed since individual∆Tk are unconstrained. Instead, temporal
homogeneity is achieved by minimizing the sum of squared ∆Tk
which enforces uniform time intervals ∆Tk = T

n . Initial s1 and
final pose sn are constrained by ss and sf respectively. Kinematic
constraints between two consecutive poses sk and sk+1 are in-
corporated by equality constraints hk(sk+1, sk). Furthermore, for
carlike robots a minimum turning radius must be satisfied which
is captured by rk(sk+1, sk). The robot’s velocity and acceleration are
limited by inequalities νk(·) and αk(·) respectively. The inequality
ok(sk) sustains a minimum separation from obstacles. Each term is
described in more detail in the following paragraphs.

Non-holonomic kinematics.
The equality constraint νk(·) enforces compliancewith the kine-

matic constraints of the mobile robot. This paper investigates in
particular differential drive and carlike robots with only two local
degrees of freedom, thus the robot can only execute a smooth path
that is composed of linear and arc segments. According to [9], the
non-holonomic constraint is defined by a geometric interpretation.
Two consecutive poses sk and sk+1 are required to be located on a
common arc of constant curvature as shown in Fig. 2. The angle ϑk
between pose sk and the directiondk,k+1 = [xk+1−xk, yk+1−yk, 0]⊺
has to be equal to the corresponding angle ϑk+1 at the consecutive
pose sk+1:

ϑk = ϑk+1 (3)[cos(βk)
sin(βk)

0

]
×dk,k+1 = dk,k+1×

[cos(βk+1)
sin(βk+1)

0

]
. (4)

The resulting equality constraint is given by:

hk(sk+1, sk) =

([cos(βk)
sin(βk)

0

]
+

[cos(βk+1)
sin(βk+1)

0

])
×dk,k+1. (5)

Equation (5) is suitable for differential drive robots that are
able to rotate in place. For carlike robots and Ackermann drives
respectively, the robot motion is further restricted by a minimal
turning radius between consecutive poses. The absolute turning
radius r̃ is given by:

r̃(sk+1, sk) =
⏐⏐⏐⏐ vk

ωk

⏐⏐⏐⏐ ≈ ∥dk,k+1∥

|βk+1 − βk|
. (6)

In order to satisfy a minimal turning radius of carlike robots, an
inequality constraint with rk(sk+1, sk) = r̃(·) − rmin is introduced.
rmin denotes the lower bound on the turning radius. For differential
drive robots it becomes rmin = 0.

Limited velocity and acceleration.
Limiting the velocity is crucial for the success in practical appli-

cations. Without any bound, the time-optimal solution according
to (2) implies ∆Tk → 0,∀k as vk →∞. For the sake of simplicity,
translational and rotational velocities at each pose vk andωk (e.g. in
the center of the robot) are considered rather than individualwheel
velocities. This simplification is sufficient for most practical appli-
cations. However, the approach allows the limitation of arbitrary
velocities that can be expressed in terms of vk, ωk and dedicated
robot design parameters. Translational and rotational velocities are
approximated using finite differences according to the Euclidean
resp. angular distance between two consecutive poses sk and sk+1:

vk = ∆T−1k ∥[xk+1 − xk, yk+1 − yk]⊺∥γ (sk, sk+1) (7)

ωk = ∆T−1k (βk+1 − βk). (8)

Note, subtracting and adding angles in domain S1 requires a
normalization in practical implementations. γ (sk, sk+1) denotes
a function that extracts the sign of the translational veloc-
ity, whether the robot moves forwards or backwards. For non-
holonomic robots that are restricted to transitions along linear and
arc segments respectively, the sign of the projection of orientation
vector qk = [cosβk, sinβk, 0]⊺ onto the distance vector dk,k+1 is
utilized:

γ (sk, sk+1) = sign (⟨qk, dk,k+1⟩). (9)

Hereby, operator ⟨·, ·⟩ applies the scalar product. Since many com-
mon optimization algorithms are not suited for non-smooth func-
tions such as (9), a sigmoidal approximation maps the projection
to the interval [−1, 1]. Our implementation employs:

γ (sk, sk+1) ≈
κ⟨qk, dk,k+1⟩

1+ |κ⟨qk, dk,k+1⟩|
. (10)

Variable κ ∈ R+ denotes a scaling factor that changes the slope
(e.g. κ = 102). Eq. (9) and (10) result in vanishing and incorrect
velocities at ⟨qk, dk,k+1⟩ = 0 or ⟨qk, dk,k+1⟩ ≈ 0 respectively.
Figuratively, this occurs if pose sk+1 is placed orthogonal to pose
sk. However, such configuration is not part of the feasible set given
by the non-holonomic constraint as mentioned before and for the
special case in which position parts of both poses coincide it is
dk,k+1 = 0 H⇒ vk = 0.

Limiting velocities to ±vmax and ±ωmax is obtained by the in-
equality constraint νk(sk+1, sk, ∆Tk) = [vmax − |vk|, ωmax − |ωk|]

⊺.
The equations might be adapted in cases in which the bound
on negative velocities should differ, which is neglected here for
simplicity, but which is often preferred in practical applications.
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A similar procedure is applied for limiting translational and rota-
tional accelerations ak and ω̇k respectively. In particular for ak it is:

ak =
2(vk+1 − vk)
∆Tk +∆Tk+1

. (11)

For the sake of clarity, sk+2, sk+1 and sk are substituted by their
related velocities (7). The limitation of the acceleration is obtained
by inequality αk(sk+2, sk+1, sk, ∆Tk+1, ∆Tk) = [amax− |ak|, ω̇max−

|ω̇k|]
⊺. Special cases occur at k = 1 and k = n− 1 for which v1 and

vn−1 are substituted by desired start and final velocities (vs, ωs) and
(vf , ωf ) respectively.

Obstacle avoidance.
The robot is supposed to reach the goal without any collision

with obstacles. The approach is suited for a broad range of obstacle
representations. The underlying optimization method is feasible
and computationally efficient under the assumption that the min-
imal Euclidean distance between the pose sk and the set of points
on the obstacle perimeter is described by a continuous function.
This paper considers obstacle representations in terms of set of
points, circles, lines and polygons. An obstacle is represented as a
simply-connected region inR2 and is denoted asO. In the presence
of R obstacles Ol, l = 1, 2, . . . , R, the subscript l is added. Let
ρ(sk,O) : R2

×S1×O→ R denote the minimal Euclidean distance
between obstacle O and the pose sk. The orientation part βk of sk
can be neglected in case of a circular shape robot. The inequality
constraint maintains a minimum separation ρmin between all ob-
stacles and pose sk according to:

ok(sk) = [ρ(sk,O1), ρ(sk,O2), . . . , ρ(sk,OR)]⊺

− [ρmin, ρmin, . . . , ρmin]
⊺. (12)

The equality constraint (12) in itself restricts the feasible set of
robot positions (xk, yk) to {R2

\ (
⋃R

l=1Õl)} in which Õl denotes
the obstacle region Ol inflated by ρmin. Obviously, this set is non-
convex such that the corresponding nonlinear program (2) exhibits
multiple local minima. The occurrence of local minima caused by
the presence of obstacles is a common phenomenon in trajectory
and path planning. The number of obstacles l has a significant
influence on the number of local minima. Due to limited com-
putational resources local optimization methods are preferred for
online optimization, therefore the solution strongly depends on
the globally planned trajectory bwhich serves as an initial solution
for the local optimizer. Note, for most practical applications the
number of distance calculations required during the optimization
might be reduced such that each obstacle Ol only effects a subset
of nearby poses, rather than the entire sequence of poses sk,∀k.
The association between obstacles and nearby poses is updated
between subsequent sampling intervals to refine suboptimal so-
lutions during runtime.

2.3. Approximative least-squares optimization

Solving nonlinear programs with hard constraints is computa-
tional expensive. Therefore, improving the efficiency of fast on-
line solvers has become an important research topic over the
last decade. The TEB approach further investigates the applica-
tion of unconstrained optimization techniques since they are well
studied and mature implementations in open-source packages
are widely available. Unconstrained optimization avoids Lagrange
resp. Karush–Kuhn–Tuckermultipliers (dual variables) causing the
dimension of the Hessian matrices to become identical with the
number of primal variables in b.

The exact nonlinear program (2) is transformed into an ap-
proximative nonlinear least-squares optimization problem that
is solved efficiently as the solver approximates the Hessian by

first order derivatives and exploits the sparsity pattern of the
problem. Constraints are incorporated into the objective function
as additional penalty terms. Since the unconstrained objective
function is composed of squared nonlinear terms only, quadratic
penalty functions are applied according to [21]. Note, that other
unconstrained approximations such as log-barrier, augmented La-
grangian or exact penalty methods [22] exist, which however
contain non-squared terms and therefore are not applicable to
unconstrained least-squares solvers.

In the following arguments of constraints are omitted for better
readability. The equality constraint h is expressed in terms of a
quadratic penalty with a scalar weight σh and identity I by:

φ(hk, σh) = σhhT
k Ihk = σh∥hk∥

2
2. (13)

Inequalities are approximated by weighted one-sided quadratic
penalties:

χ (νk, σν) = σν∥min{0, νk}∥
2
2. (14)

The min-operator is applied row-wise. Further inequalities αk and
ok are approximated in a similar fashion. Initial and final con-
straint, ss and sf respectively, are eliminated by substitution and
are therefore not subject to the optimization. ∆Tk > 0 is implicitly
incorporated by the difference quotients in (7) and (8) since the
quotients diverge for ∆Tk → 0 (initial ∆Tk must be positive).
The overall unconstrained optimization problem with objective
function Ṽ (b) that approximates (2) is given by:

b∗ = arg min
B\{s1,sn}

Ṽ (b) (15)

Ṽ (b) =
n−1∑
k=1

[
∆T 2

k + φ(hk, σh)+ χ (rk, σr )+ · · ·

+χ (νk, σν)+ χ (ok, σo)+ χ (αk, σα)
]
+ χ (αn, σα). (16)

Variable b∗ denotes the optimal parameter vector. From the theory
of quadratic penalties [21] it is well known that b∗ only coincides
with the actual minimizer of the nonlinear program (2) in case
all weights tend toward infinity σ → ∞. Unfortunately, large
weights introduce ill-conditioned characteristics of the problem
such that the underlying solver does not converge properly due
to inadequate step sizes. The TEB approach abandons the true
minimizer in favor of a suboptimal but computationally more
efficiently obtained solution with user defined weights. For small
to medium sized cluttered environments within the robots local
field of perception our experiments reveals that unit weights of
1 provide a reasonably point of departure, except for the weight
σh associated with the equality constraint of the non-holonomic
kinematics which should be chosen a few magnitudes higher
(≈ 1000). This setting is recommended as the penalty function (13)
is small compared to the inequality constraints and a near-perfect
compliance of the trajectory with the robot kinematics is crucial.

The transformation of the non-convex signed velocity con-
straint (10) onto a quadratic penalty term introduces local minima
(see Fig. 3a). However, the Fig. 3b reveals that these local minima
are canceled in the overall objective function by the conflicting
non-holonomic-constraint (5).

2.4. Solution of the approximative optimization problem

The literature proposes an abundance of algorithms for solving
nonlinear least-squares problems such as (15). Popular solvers are
Gauss–Newton, Dogleg or Levenberg–Marquardt (LM) algorithm
[21]. The TEB approach utilizes LM due to its proper balance
between robustness and efficiency. LM constitutes a trust-region
strategy that only accepts step sizes that decrease the overall
cost. The optimization problem is regularized implicitly in case it
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(a) Limiting velocity penalty.

(b) Superposed velocity and non-holonomic con-
straint penalties.

Fig. 3. Limiting velocity and non-holonomic constraint penalty values for a varying
position (x1 , y1). Variables x2 = y2 = 0m, β1 = β2 = 0 rad, ∆T1 = 0.1 s and
vmax = 1.0 m

s are fixed.

becomes singular. Applying the approach requires the solution of
a sparse linear system for which (H + λI)−1 is computed with a
damping factor λ. H = J⊺J denotes the Hessian that itself depends
on the Jacobian J. The open-source graph optimization framework
g2o [23] implements a highly efficient sparse variant of LM which
is employed for solving (15). Notice, that the ordering of poses and
time intervals in b, see (1), affects the structure of the optimiza-
tion problem. Since terms of the objective function and individual
constraints in (2) depend only on a small subset of parameters,
the resulting Hessian is sparse and banded. The formulation of the
minimum time objective presented here differs from [9] in which
V (b) = (

∑n−1
k=1∆Tk)2 = T 2 is minimized which leads to a dense

block of size (n−1)×(n−1) in the Hessian. Furthermore, according
to the discussion in Section 2.2 the solution for individual ∆Tk in
the previous strategy in [9] implies a non-zero null space. In that
case the convergence significantly relies on a proper regularization
and it is highly sensitive with respect to cost function weights and
problem dimension.

2.5. Closed-loop control

The optimization problem presented in the previous sections is
solved repeatedly during runtime. Within each sampling interval
only the first control input of the planned trajectory is commanded
to the robot. This is a common procedure in model predictive
control to account for disturbances and changes in the environ-
ment by feedback. In our case mobile robots are controlled by a
translational and rotational reference velocity w.r.t. their center of
rotation. These control inputs, in particular v1 and ω1, are calcu-
lated according to (7) and (8) respectively. Furthermore, the TEB
approach supports warm-starting to efficiently refine previously
obtained solutions. Within each sampling interval, start and final
poses are updated and the previous trajectory is resampled w.r.t.

its length n to account for changingmagnitudes of∆Tk and to guide
the planner toward a desired temporal discretization ∆Tref of the
trajectory. A new sample is inserted between sk and sk+1 if ∆Tk is
larger than the reference step size, otherwise sk+1 is removed [9]. A
small hysteresis∆Thyst in regulating the number of samples avoids
excessive oscillations. The experimental results are obtained with
∆Tref = 0.3 s and ∆Thyst = 0.1∆Tref . The initial trajectory length
n is obtained from a uniform partition of the initial trajectory into
piecewise linear segments with equidistant spatial separation of
0.3m. In the following the approach is extended further, such that
the focus on closed-loop control is resumed in Section 4.

3. Exploring distinctive topologies

The following sections address the problemof finding the global
minimumof (2) resp. (15). As described in Section 2.2, the presence
of obstacles introduces multiple local minima since the resulting
set of feasible robot poses is non-convex. Therefore, finding local
minima coincides with the extraction of distinctive topologies.
The developed approach aims to identify N relevant topologies
implicated by occupied obstacle regions and provides an initial
trajectory bj, j = 1, 2, . . . ,N for each topology. These initial trajec-
tories are intended to be optimized in parallel by the TEB approach
as described in Section 2. The least-cost trajectory is selected from
the set of alternatives to reveal the global minimizer. Furthermore,
the developed approach is integrated in the state feedback of the
closed-loop control system to explore and update the set of local
solutions during runtime.

3.1. Equivalence relations: homotopy classes and homology classes

Under the reasonable assumption that local minima are caused
by obstacles, the search space for identifying local candidates is
reduced to the 2D plane containing only position parts zk =
(xk, yk) ∈ R2 of sk, since they are not allowed to be part of

⋃R
l=1Õl.

Parameters βk and ∆Tk are not affected directly. The path in terms
of a sequence of robot positions is defined as τ = (zk)k=1,2,...,n.
b = h(τ ) denotes the mapping from the (initial) path to the op-
timization parameter b. Notice, that the global cost function might
possess multiple local minima due to symmetry of trajectories or
solutions with initial robot forward or backward motion. In our
case the initial local solution is dictated by the path generated by
the global planner.

Without loss of generality, in the following a 2D position zk ∈
R2 of a path τ is represented in the complex domain by zk =
xk + iyk ∈ C. The same applies for obstacles Ol that are embedded
in C rather than R2. In the following boldface script is omitted
whenever the complex domain representation is preferred.

The presented approach is based on the theory of homotopy
classes. First homotopic paths are defined according to [24]:

Definition 1 (Homotopic Paths). Two paths τ1 and τ2 connecting
the same start and goal points zs and zf respectively, are homotopic
if and only if one can be continuously deformed into the other
without intersecting any obstacles. The set of all paths that are
homotopic to each other is denoted as homotopy class.

Based on the above Definition 1 local optimization methods
for dynamic problems with warm-starting establish a homotopy
between the solution paths τ ∗ and τ of subsequent optimization
steps. Let A = {bϵ ∈ B | Ṽ (b∗) ≤ Ṽ (bϵ), bϵ = b∗ + ϵ} denote the
(attractive) vicinity of a local minimum b∗ with the objective func-
tion Ṽ of (16). Figuratively, all paths τϵ with bϵ = h(τϵ) ∈ A that
converge to the same local minimum are homotopic and therefore
relate to the same homotopy class. A single representative b(i)

ϵ ∈

A(i) of each homotopy class A(i) provides a valid initial solution of
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Fig. 4. Illustrative example of homologue but not homotopic paths borrowed from
[24].

problem (15) and is sufficient to identify the local minimum b∗(i)
of the ith homotopy class.

The closed form generic computation of homotopy classes is
difficult. [24] suggests substituting the homotopy with homology
classes as they are easier to compute. Ahomology class defines a set
of homologous paths in which elements are homologous to each
other.

Definition 2 (Homologous Paths). Two paths τ1 and τ2 connecting
the same start and goal points zs and zf respectively, are homol-
ogous if and only if τ1 ⊔ −τ2 forms the complete boundary of a
2D manifold embedded in C not containing and intersecting any
obstacle.

Homotopy implies homology, but the reverse implication does
not hold. However, for most practical mobile robot planning sce-
narios, both definitions can be considered as equivalent. Fig. 4
shows an example in which paths τ1 and τ2 belong to two different
homotopy classes, since they cannot be transformed continuously
into each other without intersecting any obstacle. On the other
hand τ1 and τ2 are homologue to each other, since the area A =
A1 ∪ A2 spanned by the disjoint union τ1 ⊔ −τ2 does not contain
obstacles. They belong to the same homology class. Notice, homol-
ogous paths might also be defined by vanishing winding numbers
evaluated at each obstacle within the cycle τ1 ⊔ −τ2.

[24] and [17] present an analytical approach to determine ho-
mology classes based on complex analysis. In summary, the ho-
mology invariant termed H-signature constitutes an equivalence
relation that assigns a unique complexnumber to paths of the same
homology class. The H-signature is originally defined for contin-
uous paths between start and goal points zs and zf respectively.
Let τ̃ (t) denote a continuous path such that τ̃ (t = 0) = zs and
τ̃ (t = T ) = zf , the complex homology invariant is defined by:

H(τ̃ ) =
∫

τ̃

F(z)dz. (18)

Equation (18) follows immediately from the definition of the
Cauchy’s integral formula [17]. Obviously,F(z) depends on the ob-
stacle positions. [17] suggest the following function F(z), referred
to as obstacle marker function:

F(z) =
f0(z)

(z − ξ1)(z − ξ2) · · · (z − ξR)
(19)

(ξl ⊆ Ol) ∈ C,∀l = 1, 2, . . . , R denote representative points of
R obstacles. Each representative point ξl is arbitrarily chosen from
the interior of the obstacle region respectively obstacle shapeOl. f0
denotes an arbitrary analytic function over C. In our experiments
we chose f0(z) = ab(z−BL)(z−TR) with a = ceil( R2 ) and b = R−a.
Operator ceil(·) maps to the smallest following integer. Parameters
BL ∈ C and TL ∈ C denote the bottom left and upper right corner
of the environment. This formulation slightly differs from the one
presented in [17], as it improves the scalability w.r.t. number of
obstacles (R = 0−500 in our experimentswith typicalH-signature

values of less than 1010). The original formulation tends to large
H-signatures (>10100) even for hundreds of obstacles for which
numerically instabilities could occur.

In order to calculate the H-signature of the discrete path τ , the
analytic solution of (18) for line segments is utilized. [17] derives
an analytic expression for a line segment connecting two points zk
and zk+1:

Hs(zk, zk+1) =
R∑

l=1

Al(ln(zk+1 − ξl)− ln(zk − ξl)) (20)

with Al = f0(ξl)
[∏R

j=1,j̸=l(ξl − ξj)
]−1

. The H-signature of a discrete

path (composed of line segments) is calculated by:

H(τ ) =
N−1∑
k=1

Hs(zk, zk+1). (21)

Note that the actual implementation of (20) requires the the-
ory of complex logarithm. [24] suggests selecting the branch that
minimizes the angle between zk+1− ξl and zk− ξl (by testing some
values α ∈ Z close to zero):

Hs(zk, zk+1) =
R∑

l=1

Al

[
ln(|zk+1 − ξl|)− ln(|zk − ξl|)+ · · ·

+ i min
α∈Z

(
|arg(zk+1 − ξl)− arg(zk − ξl)+ 2απ |

)]
.

(22)

The proposed H-signature determines whether multiple paths
belong to the same homology class which is fulfilled if all
H-signatures are identical up to numerical precision.

3.2. Discovery of homology classes

Based on the homology invariant proposed in the previous
section, an algorithm for exploring relevant homology classes is
developed. [17] introduces a search graph that is augmented by H-
signatures in order to restrict trajectories to a given admissible set
of homology classes while invoking an A∗-search for the optimal
trajectory. In contrast, our approach does not attempt to directly
solve the planning problem with graph search. Instead, it solves
(15) with a local online optimization method. This modification
requires the ongoing maintenance of current and discovery of
novel homology classes in conjunction with the underlying trajec-
tory optimization. The required computation time is of particular
importance since solving nonlinear problems such as (15) still
requires a substantial computational effort. Therefore, the pro-
posed approach gathers coarse, collision free candidate trajectories
which consecutive waypoints are arranged in forward direction
only. The H-signature is applied as a filter to eliminate all but one
trajectory for each homology class.

Given the robot’s current position zs, goal zf (both inC notation)
and the set of obstacle regions O = {Ol | l = 1, 2, . . . , R}, an
exploration graph G = {V, E} is constructed in order to gather an
initial subset of admissible paths. The set of vertices is defined by
V = {zs, ζi, zf ∈ C | ∀ζi ̸∈ O, i = 1, 2, . . . , I}. ζi ∈ C are waypoint
samples that later may become a part of the trajectory.

3.2.1. Exploration based on Voronoi diagrams
A complete exploration graph with all feasible candidate tra-

jectories is generated from a Voronoi diagram of the environment.
Given a distance metric (e.g. Euclidean distance), the Voronoi
diagram partitions the 2d plane into multiple regions Rl ⊆ C
according to the number of obstacles l = 1, 2, . . . , R. Each re-
gion Rl defines the set of points which are (strictly) closer to
the corresponding obstacle Ol than to all other obstacles O \ Ol.
Formally, the Voronoi diagram Gvd is defined as the set of all region
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Fig. 5. Example of a discretized Voronoi diagram with connected start zs and goal
zf .

boundaries Gvd = C \ ∪R
l=1Rl. In order to transform Gvd into an

exploration graph G, the set Gvd is discretized spatially such that
discretized points ζi, i = 1, 2, . . . , I are considered as vertices and
the corresponding part of the boundary between two consecutive
vertices is included as a bidirectional edge. Furthermore, start and
goal positions, zs and zf respectively, are connected to the vertices
obtained from the Voronoi diagram. A reasonable strategy for both
start and goal is to find the closest point ζi each for which an
edge in terms of collision-free line segment can be generated. An
exploration graph G obtained from the Voronoi diagram for an
example environment is illustrated in Fig. 5.

Based on the generated graph G, its simple paths between zs and
zf are extracted by a depth-first search augmented by a visited list.
TheH-signature for each path is calculated according to (21) and is
added to the set of known signatures in case it is not amember yet.
Path candidates with duplicate H-signature are discarded. Even
though the Voronoi diagram already provides distinctive topolo-
gies, theH-signature is required to determinepreviously found and
optimized trajectories as described in the following Section 4.

The two steps of finding all simple paths and filtering homo-
logue paths is combined into a single search algorithm to improve
efficiency. Algorithm 1 constitutes amodified recursive depth-first
search. The set L contains those vertices already visited such that
after reaching the goal, L consists of the complete path candi-
date from zs to zf . This path candidate is matched with potential
homologue duplicates in H in line 10 and 11. If its homology
class is novel, the corresponding trajectory for the underlying
optimization problem is initialized from the path L. The coarse
path defined by {zs, ζi, zf } is subsampled and the orientation parts
βk of the poses are initialized according to the direction among
subsequent positions. Rather than storing the 2D position part τ of
the trajectories, the complete optimization parameter b is stored
for subsequent warm-starts of the optimization. The number of
maximum distinctive topologies is specified at line 2 in order to
limit the computation time.

3.2.2. Sampling-based exploration strategy
As an alternative to a complete exploration we propose a sam-

pling strategy to generate the exploration graph G. The previously
presented approach based on Voronoi diagrams is complete, but
the computation time for generating the candidate trajectories
does not scale well with the number of obstacles. In the context of
online trajectory planning under limited computational resources

Algorithm 1 Find paths in alternative homology classes
Input: G - reference to the acyclic graph; L - reference to an

ordered visited list containing only zs; zf - goal vertex; T -
reference to the trajectory set; H - reference to the set of H-
signatures

Output: Updated set of trajectories and H-signatures
1: function depthFirst(G, L, zf , T ,H)
2: if max. size of T is reached then
3: return
4: l← L.back() ▷ Get last visited vertex
5: for each adjacent vertex w of vertex l in G do
6: if w ∈ L then ▷ Already visited
7: continue
8: if w == zf then ▷ Goal reached
9: L.append(w) ▷ Finalize trajectory

10: h← calcHSig(L) ▷ See Eq. (22)
11: if h /∈ H then
12: b← initTrajectory(L) ▷ b = h(τ )
13: T .append(b) ▷ Save complete trajectory
14: H .append(h) ▷ Store H-signature
15: break
16: for each adjacent vertex w of vertex l in G do
17: if w ∈ B or w == zf then ▷ Already visited or

goal reached
18: continue
19: L.append(w)
20: depthFirst(G, L, zf , T ,H) ▷ Recursion step
21: L.pop(w)

return

one favors faster computations to identify a subset ofmost promis-
ing candidate trajectories rather than exploring the complete set.

Waypoint sampling follows the probabilistic roadmaps (PRM)
approach [25]. Hence, waypoints ζl are sampled uniformly from a
predefined region Q ⊆ C. Sampled waypoints that intersect with
any obstacle region are rejected until a desired number of samples
is obtained. The set of edges E is constructed from the waypoint
seeds. An edge connects a pair of verticesw1 ∈ V andw2 ∈ V if the
following conditions apply:

• Direction is forward oriented with respect to the goal head-
ing, such thatℜ[(w2 − w1)(zf−zs)]

(
|w2 − w1||zf − zs|

)−1
>

θ with θ ∈ [0, 1].
• Line segment L = {w1 + t(w2 − w1) | ∀t ∈ [0, 1]} does not

intersect with any obstacle Ol such that L ∩ O = ∅.

Obviously, the first condition eliminates those paths which
Euclidean distance to the goal does not decrease monotonically.
However, online trajectory planners usually obtain their interme-
diate goals from a global planner. Assuming that these subgoals
are properly arranged and ordered the restriction to acyclic graphs
is justified. This condition significantly reduces the number of
candidate trajectories and computational effort of graph search.
The threshold θ for the angular width of the forward direction can
be increased to further narrow the line of sight. The remaining
steps are identical to the algorithm outlined above. See Fig. 6
for a figurative example, samples inside O1 or O2 are rejected.
Obviously, the computation time increases exponentially with an
increasing number of samples. Sampling is repeated at each itera-
tion such that novel homology classes might still be discovered at
a later stage. It is possible to construct artificial environments that
violate the assumption. However inmost practical applications the
assumption is valid for the robots local environment considered for
trajectory optimization. Refer to Section 5 for the corresponding
analysis.
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Fig. 6. Example of sampled exploration graph.

4. Integrated online trajectory planning in distinctive topolo-
gies

The following section describes the integration of the homology
class discovery with the TEB approach within the robot control
feedback loop. Algorithm 2 performs the principal planning step
invoked at each sampling interval of the mobile robot. During the
initial invocation the set of admissible trajectories Γ is empty
(in practical implementations Γ may contain an initial trajectory
provided by the global planner). A new graph is created in lines
7–9 according to Section 3.2 by seeding randomsamples in a region
of interest (typically a rectangular or a semicircle connecting zs
and zf ). Afterwards the modified depth first search (see Algorithm
1) is applied in order to discover distinctive homology classes. A
single representative trajectory featuring a unique H-Signature is
initialized for each class in Γ . Candidate trajectories ∀bi ∈ Γ

are optimized simultaneously in lines 11–14 by applying Iteb iter-
ations to minimize (16). Additionally, each trajectory is resampled
according to a reference temporal discretization as mentioned in
Section 2.5 (line 13). The globally optimal trajectory b∗ is selected
according to the minimal objective function value (16). Control
variables v1 and ω1 are obtained from b∗ by applying (7) and (8)
respectively.

Algorithm 2 Online planning step which is invoked repeatedly
Input: ss = (zs, βs) - start pose; sf = (zf , βf ) - final pose; (vs, ωs)

- initial velocities; Γ - reference to the trajectory set; H -
reference to the set of H-signatures; O - set of obstacles

Output: (Sub-)optimal control u∗
1: function planTrajectories(ss, sf , Γ ,H,O)
2: if Γ is not empty then ▷ Γ .size() == H .size()
3: Γ ← updateTrajectories(Γ , ss, sf , vs, ωs)
4: if size(Γ ) > 1 then
5: (Γ ,H)← deleteDetours(Γ , ss, sf ,O)
6: H← renewHC(T ,H,O)
7: L← allocate empty visited list
8: L.append(zs)
9: G← createGraph(O)

10: depthFirst(G, L, zf , Γ ,H)
11: for each trajectory b ∈ Γ do ▷ parallelizable
12: for all Iterations 1 to Iteb do
13: Adjust length n of the TEB
14: b← callOptimizer(b,O) ▷ solve Eq. (15)
15: b∗← selectLeastCostTrajectory(T ,O)

return control input (v1, ω1) according to (7), (8) and b∗

In subsequent planning step invocations, Γ and H already con-
tain candidate trajectories optimized in previous iterations and
hence lines 3–6 are executed. The current start pose ss, initial
velocities (vs, ωs) and final pose sf are updated according to the
novel robot state and perceptions. Additionally, the current set of
trajectories is validated for admissibility ifmultiple alternatives are
available (lines 5–6). In particular the edge conditions of Section
3.2.2 are verified. In case of a violation the trajectory and the
correspondingH-signature are eliminated. Keeping at least a single
trajectory which does not fulfill all edge requirements (line 5)
ensures that a trajectory in which the robot must head backwards
is not rejected (e.g. by preserving the global plan as candidate). The
current set of H-signatures is updated in case obstacle configura-
tion changes (line 6).

5. Experimental results and examples

The following examples and scenarios demonstrate the capa-
bilities of the proposed online trajectory planning approach. Algo-
rithms are executed on a machine running Ubuntu with a 3.4Ghz
Intel i7 CPU. The C++ source code is available online [20].

Firstly, the process of finding alternative trajectories in a
medium sized environment (10m×10m) with randomly gener-
ated obstacles and start respectively goal positions of the robot
is investigated. Exploration results of each generated scenario are
analyzed and compared for the proposed exploration strategies, in
particular the Voronoi diagram approach and the sampling based
approach with a varying number of samples I . Hereby, three dif-
ferent types of obstacle representations are considered: (i) point-
shaped obstacles, (ii) line-shaped obstacles and (iii) a mixture of
both but with discretized lines (0.1m steps) in order to simulate
map representations based on laser range data which often arises
in practical navigation scenarios. For each type 100 environments
are generated such that the minimum distance between obstacles
is at least 1.5m and that line segments are not longer than 4m.
Additionally, each exploration strategy is invoked multiple times
for each environment by maintaining the set of previously found
candidates. Hereby, the capabilities of revealing new candidate
trajectories during online exploration is investigated. The sampling
region Q is chosen as oriented rectangle between the robot’s
current start zs and goal zf . It’s width is 6m and the length is
expanded by 10% of |zf − zs| in order to take further samples close
to the start and goal into account. The maximum line of sight for
each edge with respect to the goal heading is set to θ = π/3. In
comparison, the Voronoi diagram is limited to the same rectangle
as bounding box but without restricting line of sight. The Voronoi
diagram is generated based on an efficient implementation of the
algorithm in [26] as part of the boost open-source software library.
Edges that separate two close obstacles (separation smaller than
the robot’s expanse) are rejected before invoking Algorithm 1 in
order to prevent theplanner fromgenerating infeasible trajectories
and reducing computation time for scenarios with laser range data
and point clouds as obstacle representations.

Table 1 depicts the statistical results including path coverage
with respect to the complete list of explored candidates obtained
on the Voronoi diagram. Furthermore, it presents the percentage of
correctly selected globally optimal trajectories among the subset of
candidates (correct hit) and finally the mean and standard devia-
tion of the required computation time (CPU time). Path coverage
is provided for multiple exploration invocations (1, 3, 6 and 10)
as mentioned before. Fig. 7 depicts an example environment with
randomized points and discretized line segments and illustrates
results for both strategies. Since the Voronoi strategy is considered
as complete within the configured bounding box, its candidate
set and the corresponding selected trajectory are considered as
reference. The analysis reveals that the sampling based strategy
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Fig. 7. Application of Alg. 2 with an internal bounding box (width: 6m) between start and goal. (a) Simple paths found with the Voronoi based approach and (b) the
corresponding TEB optimization result, the black solid line corresponds to the selected candidate. (c) Found and optimized trajectories using the sample based approach
(with I = 10) after a single invocation and (d) after ten invocations. In this particular example, the sampling based planner has not found the globally optimal trajectory
from (b) yet.

Table 1
Exploration and computation time analysis for randomly generated environments. Abbreviation ‘‘S.’’ denotes the sam-
pling based strategy along with I samples. Hit corresponds to the percentage of the correctly selected trajectory in the
1. step.

Strategy Path coverage [%] CPU time [ms] Hit [%]

Step 1 Step 3 Step 6 Step 10

Points only

Voronoi 100 100 100 100 189±381 100
S. (I = 5) 36.8 41.4 47.0 48.6 6±9 90
S. (I = 10) 40.2 48.2 49.9 52.0 11±19 92
S. (I = 15) 42.7 50.6 52.1 55.2 18±32 93
S. (I = 20) 45.6 51.8 54.9 57.2 36±76 96

Lines only

Voronoi 100 100 100 100 11±34 100
S. (I = 5) 57.6 69.3 75.6 76.8 1±2 89
S. (I = 10) 66.4 78.1 79.2 81.3 2±3 93
S. (I = 15) 70.1 81.2 81.5 82.5 3±4 93
S. (I = 20) 76.7 80.6 83.3 84.5 7±17 93

Points & discr. lines

Voronoi 100 100 100 100 2011±4466 100
S. (I = 5) 57.6 69.3 75.6 76.8 65±83 92
S. (I = 10) 66.4 78.1 79.2 81.3 108±145 95
S. (I = 15) 70.1 81.2 81.5 82.5 166±243 95
S. (I = 20) 76.7 80.5 83.3 84.5 332±691 96

achieves an average path coverage of approximately 60%. Notably,
the least cost trajectory is among the explored set in approximately
90–95% after the first exploration invocation even by seeding only
a few samples (5–10) and by requiring only a fraction of the
computation time compared to our Voronoi implementation. This
observation supports the hypotheses that the globally optimal tra-
jectory does not differ substantially from the line of sight between
the current start and goal frame. Obviously, this does not apply for
arbitrary large environments, but holds for scenarios in which the
local optimal planner is confronted with multiple small static and
dynamic obstacles within the local perception of the robot while
following intermediate goal points provided by the global planner.
The global planner in that case is assumed to be aware of large
(static) obstacles and barriers in the environment. Hence it isworth
considering the sampling based approach in applications in which
a full path coverage for finding the globally optimal trajectory is not

crucial in exchange for faster online planning and still being able to
reveal alternative trajectories around obstacles. The Voronoi based
approach is preferable if environments are large and the planner
is utilized in a global planning context. Notice, for preprocessed
or structured obstacle representations such as line segments or
polygons, the Voronoi strategy handles the complete exploration
even in a few milliseconds for the investigated environments. In
the following, the sampling based approach with 15 samples is
selected for local planning applications.

The second example demonstrates the extension of the TEB
approach to support reversals of driving direction and kinematics
of a carlike robot. Furthermore it investigates whether the globally
optimal trajectory is correctly selected among the set of alternative
maneuvers. The final pose sf is located 1.5m next to the start pose
however with opposite final orientation. Fig. 8a depicts three dis-
tinctive trajectories for a differential drive robot. The translational
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(a) Differential-drive robot.

(b) Carlike robot with rmin = 2m.

Fig. 8. Moving from ss = [0m, 0m, 0 rad]⊺ to sf = [0m, 1.5m, π rad]⊺ . Cell size:
1m2 . The solid trajectory represents the globally optimal solution among the set of
alternatives.

velocity profile is bounded to the interval [−0.2 m
s , 0.4 m

s ] and
are shown in Fig. 9a. As expected the trajectory that achieves the
shortest transition time (black solid line) is selected as the global
optimal solution. The same scenario is performed for a carlike robot
with a lower limit on the turning radius (6) to rmin = 2m (see
Fig. 8b). Here, also the fastest candidate trajectory is commanded
to the robot as depicted in Fig. 9b. In this scenario, the number
of solver and resizing invocations Iteb is set to 4 (see Alg. 2) and
the number of LM iterations as part of the g2o framework is set
to 5. The average CPU time measured for each call to Alg. 2 is
45ms including exploration, maintenance and optimization of all
3 alternatives. Hereby, all 3 alternatives are found, initialized and
converged within the first 500ms.

The following two scenarios demonstrate the application of
the proposed algorithm to closed-loop control of a Pioneer 3DX
differential drive mobile robot in environments with dynamics
obstacles. Humans are referred to as dynamic obstacles and walls
represent static obstacles. Simulations are performed in Gazebo
(as part of ROS) using a dynamic model of the Pioneer 3DX and
constant velocity models for humans. The robot is equipped with
a laser scanner that generates range readings for a 2D horizontal
slice of the environment. Each intersection with an obstacle marks
the corresponding cell (15 cm · 15 cm) in a costmap as occupied.
Furthermore, the TEB treats each cell as individual point obstacle.
Translational and angular velocities are limited to vmax = 0.4 m

s
and ωmax = 0.3 rad

s respectively. The desired minimal separation
from obstacles is 0.5m.

The proposed integratedmethod is compared with the classical
TEB approach (without homology class exploration) and DWA
(available in ROS, refer to Section 1 for details). The DWA forward
simulation time for each sample is 6 s in order to obtain a trajectory
length comparable to the other methods. The first scenario evalu-
ates the closed-loop behavior of the planner in case the optimal

(a) Differential-drive robot.

(b) Carlike robot.

Fig. 9. Translational velocity profile according to scenarios in Fig. 8 (globally optimal
solution: solid line, alternatives: dashed and dotted lines).

trajectories transit from the left to right or vice versa right to left
side of a moving obstacle. In this scenario a human who ignores
the approaching robot moves toward a wall. The initial optimal
trajectory passes between the wall and the human and becomes
inadmissible as the human cuts of the gap for the robot to pass in
between the human and the wall. Fig. 10 shows the closed loop
trajectory of the robot in response to the evolution of the human
motion. At the beginning all planners prefer the fastest trajectory
from the homology class along the gap between the human and
the wall. The classical TEB gets stuck at the local minimum and
collides with the obstacle. The DWA first slows down the robot
before switching to the opposite side. The transition is initiated
too late such that a collision can no longer be avoided. The TEB
optimizationwith distinctive topologies discovers the opportunity
to pass on the opposite side early on, as it considers the alternative
path from the beginning. It switches to the alternative path as it
becomes more attractive as the original gap closes.

The second scenario demonstrates the online planning in an
open space environment with eight dynamic ignorant obstacles
which traces are shown in Fig. 11. The classic TEB collides halfway
through the transit of the group, as its preferred trajectory is
elongated by the diagonal motion of the human starting at the
bottom. In addition, another human, which approaches from the
right side, causes the robot to collide, since the local planner is
unable to switch the homology class. The proposed planner and the
DWA are both able to find a collision free path to the goal despite
the obstruction caused by the dynamic obstacles. The closed loop
trajectory of our approach stays close to the ideal straight line
between start and goal. Fig. 12 shows the corresponding transla-
tional velocity profile of the robot for the different planners. The
DWA often reduces the robot speed in order to avoid imminent
collisions. In contrast, the ability of our approach to consider
alternative future evolutions of a scenario enable the robot to
navigate at near maximum speed toward the goal. Note, that the
DWA implementation reduces speed while approaching the goal,
therefore the actual travel time is incomparable.
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Fig. 10. Scenario 1: Traces of the robot’s odometry and the human’s movement (gray line). Cell size: 1m2 .

Fig. 11. Scenario 2: Traces of the robot’s odometry and the humans’ movements (solid gray lines). Cell size: 1m2 .

Fig. 12. Transl. velocity profile of the robot in scenario 2.

6. Conclusions and future work

The combined approach of homology class exploration and
online trajectory optimization for closed-loop planning and con-
trol offers the advantage to account for alternative evolutions
of scenarios of dynamic obstacles. The comparative analysis of a
sampling based exploration strategy with an approach based on
Voronoi diagrams reveals application specific advantages of each
method. Whereas the latter provides the complete set of alterna-
tive trajectories and hence the globally optimal solution, the for-
mer generates a sufficient subset for small tomedium size environ-
ments for limited computational budgets. Examples demonstrate
that the Timed-Elastic-Band (TEB) approach constitutes a suitable
method to efficiently optimize the set of alternative trajectories
during runtime while providing time-optimal solutions. With the
proposed extensions the TEB approach enables the planning in
distinctive topologies even for carlike robots that are restricted to
a limited turning radius. The comparison with two planners that
do not consider distinctive topological trajectories in simulation
illustrates the benefits of multiple trajectory planning in general.

Future work is concerned with extending the search for alter-
native topologies to not only the spatial but also the temporal
domain. In that predicted trajectories of dynamic obstacles can be
incorporated in order to decidewhether slowing down or speeding
up the robot might be preferred over avoiding obstacles by spatial
deformations of the path. Furthermore, in order to establish the
practical usefulness of homology based planners it is of interest to
analyze the computation time of alternative equivalence relations
proposed in the literature.
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